We talked a lot about languages representing problems. Consider the problem of adding two numbers. What language class does it belong to?
ECE-374-B: Lecture 9 - Recursion, Sorting and Recurrences

Instructor: Abhishek Kumar Umrawal
February 20, 2024

University of Illinois at Urbana-Champaign
We talked a lot about languages representing problems. Consider the problem of adding two numbers. What language class does it belong to?
Pre-lecture brain teaser

Let’s say we are adding two unary numbers.

\[3 + 4 = 7 \rightarrow 111 + 1111 = 1111111 \]

(1)

Seems like we can make a PDA that considers
Pre-lecture brain teaser

What if we wanted add two binary numbers?

\[3 + 4 = 7 \rightarrow 11 + 100 = 111 \] (2)

At least context-sensitive b/c we can build a finite Turing machine which takes in the encoding

\[
\begin{array}{cccccc}
\triangleright & 1 & 1 & + & 1 & 0 & 0 & = & 1 & 1 & 1 & \downarrow \\
 q_1
\end{array}
\]
What if we wanted to add two binary numbers?

\[3 + 4 = 7 \rightarrow 11 + 100 = 111 \]

Computes value on left hand side

\[
\begin{array}{cccccc}
\text{=} & 1 & 1 & + & 1 & 1 & 1 = 1 & 1 & 1 & 1 & \leftarrow
\end{array}
\]

\[q_1 \]
Pre-lecture brain teaser

What if we wanted to add two binary numbers?

\[3 + 4 = 7 \rightarrow 11 + 100 = 111 \] \hspace{1cm} (4)

And compares it to the value on the right..
New Course Section: Introductory algorithms
Learning Objectives

At the end of the lecture, you should be able to understand

- the idea of an algorithm and algorithmic problems,
- how to reduce a problem into another,
- the design and analysis of recursive algorithms, and
- some example recursive algorithms for sorting and searching.
Brief intro to the Random Access Machine (RAM) model
• Algorithm solves a specific problem.
• Steps/instructions of an algorithm are simple/primitive and can be executed mechanically.
• Algorithm has a finite description; same description for all instances of the problem
• Algorithm implicitly may have state/memory

A computer is a device that

• implements the primitive instructions
• allows for an automated implementation of the entire algorithm by keeping track of state
Models of Computation vs Computers

- Model of Computation: an idealized mathematical construct that describes the primitive instructions and other details
- Computer: an actual physical device that implements a very specific model of computation

In this course: design algorithms in a high-level model of computation.

Question: What model of computation will we use to design algorithms?
Models of Computation vs Computers

- Model of Computation: an idealized mathematical construct that describes the primitive instructions and other details
- Computer: an actual physical device that implements a very specific model of computation

In this course: design algorithms in a high-level model of computation.

Question: What model of computation will we use to design algorithms?

The standard programming model that you are used to in programming languages such as Java/C++. We have already seen the Turing Machine model.
Unit-Cost RAM Model

Informal description:

- Basic data type is an integer number
- Numbers in input fit in a word
- Arithmetic/comparison operations on words take constant time
- Arrays allow random access (constant time to access $A[i]$)
- Pointer based data structures via storing addresses in a word
Example

Sorting: input is an array of \(n \) numbers

- input size is \(n \) (ignore the bits in each number),
- comparing two numbers takes \(O(1) \) time,
- random access to array elements,
- addition of indices takes constant time,
- basic arithmetic operations take constant time,
- reading/writing one word from/to memory takes constant time.

We will usually do not allow (or be careful about allowing):

- bitwise operations (and, or, xor, shift, etc).
- floor function.
- limit word size (usually assume unbounded word size).
What is an algorithmic problem?
An algorithmic problem is simply to compute a function $f : \Sigma^* \to \Sigma^*$ over strings of a finite alphabet.

Algorithm \mathcal{A} solves f if for all input strings w, \mathcal{A} outputs $f(w)$.

Types of Problems

We will broadly see three types of problems.

- **Decision Problem**: Is the input a YES or NO input?
 Example: Given graph G, nodes s, t, is there a path from s to t in G?
 Example: Given a CFG grammar G and string w, is $w \in L(G)$?

- **Search Problem**: Find a solution if input is a YES input.
 Example: Given graph G, nodes s, t, find an s-t path.

- **Optimization Problem**: Find a best solution among all solutions for the input.
 Example: Given graph G, nodes s, t, find a shortest s-t path.
Given a problem P and an algorithm A for P we want to know:

- Does A correctly solve problem P?
- What is the asymptotic worst-case running time of A?
- What is the asymptotic worst-case space used by A.

Asymptotic running-time analysis: A runs in $O(f(n))$ time if:

“for all n and for all inputs I of size n, A on input I terminates after $O(f(n))$ primitive steps.”
Algorithmic Techniques

- Reduction to known problem/algorithm
- Recursion, divide-and-conquer, dynamic programming
- Graph algorithms to use as basic reductions
- Greedy

Some advanced techniques not covered in this class:

- Combinatorial optimization
- Linear and Convex Programming, more generally continuous optimization method
- Advanced data structure
- Randomization
- Many specialized areas
Reductions
Reducing problem A to problem B:

- Algorithm for A uses algorithm for B as a black box.
Reduction

Reducing problem A to problem B:

- Algorithm for A uses algorithm for B as a black box.

Q: How do you hunt a blue elephant?

A: With a blue elephant gun.
Reduction

Reducing problem A to problem B:

- Algorithm for A uses algorithm for B as a **black box**.

Q: How do you hunt a blue elephant?

A: With a blue elephant gun.

Q: How do you hunt a red elephant?

A: Hold its trunk shut until it turns blue, and then shoot it with the blue elephant gun.
Reduction

Reducing problem A to problem B:

- Algorithm for A uses algorithm for B as a **black box**.

Q: How do you hunt a blue elephant?

A: With a blue elephant gun.

Q: How do you hunt a red elephant?

A: Hold its trunk shut until it turns blue, and then shoot it with the blue elephant gun.

Q: How do you shoot a white elephant?

A: Embarrass it till it becomes red. Now use your algorithm for hunting red elephants.
UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

```plaintext
DistinctElements(A[1..n])
for i = 1 to n - 1 do
  for j = i + 1 to n do
    if (A[i] = A[j])
      return YES
  return NO
```

Running time: $O(n^2)$
UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

```plaintext
DistinctElements(A[1..n])
  for $i = 1$ to $n - 1$ do
    for $j = i + 1$ to $n$ do
        return YES
  return NO
```
Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

```
DistinctElements(A[1..n])
    for $i = 1$ to $n - 1$ do
        for $j = i + 1$ to $n$ do
                return YES
        return NO
```

Running time: $O(n^2)$
Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

```
DistinctElements(A[1..n])
  for $i = 1$ to $n - 1$ do
    for $j = i + 1$ to $n$ do
        return YES
    return NO
```

Running time: $O(n^2)$
Reduction to Sorting

DistinctElements\((A[1..n]) \)

Sort \(A \)

\[\text{for } i = 1 \text{ to } n - 1 \text{ do} \]

\[\text{if } (A[i] = A[i + 1]) \text{ then} \]

\[\text{return } \text{YES} \]

\[\text{return } \text{NO} \]
Reduction to Sorting

\textbf{DistinctElements}(A[1..n])

\begin{itemize}
 \item Sort A
 \item for $i = 1$ to $n - 1$ do
 \begin{itemize}
 \item if ($A[i] = A[i + 1]$) then
 \begin{itemize}
 \item return YES
 \end{itemize}
 \end{itemize}
\end{itemize}

return NO

\textbf{Running time:} $O(n)$ plus time to sort an array of n numbers

\textbf{Important point:} algorithm uses sorting as a \underline{black box}
Reduction to Sorting

DistinctElements(A[1..n])
 Sort A
 for i = 1 to n - 1 do
 if (A[i] = A[i + 1]) then
 return YES
 return NO

Running time: $O(n)$ plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be "sorted". Can also consider hashing but outside scope of current course.
Two sides of Reductions

Suppose problem A reduces to problem B

- **Positive direction**: Algorithm for B implies an algorithm for A
- **Negative direction**: Suppose there is no “efficient” algorithm for A then it implies no efficient algorithm for B (technical condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in $O(n)$ time

- An $O(n \log n)$ time algorithm for Sorting implies an $O(n \log n)$ time algorithm for Distinct Elements problem.
- If there is no $o(n \log n)$ time algorithm for Distinct Elements problem then there is no $o(n \log n)$ time algorithm for Sorting.
Two sides of Reductions

Suppose problem A reduces to problem B

- **Positive direction**: Algorithm for B implies an algorithm for A
- **Negative direction**: Suppose there is no “efficient” algorithm for A then it implies no efficient algorithm for B (technical condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in $O(n)$ time

- An $O(n \log n)$ time algorithm for Sorting implies an $O(n \log n)$ time algorithm for Distinct Elements problem.
- If there is no $o(n \log n)$ time algorithm for Distinct Elements problem then there is no $o(n \log n)$ time algorithm for Sorting.
Recursion as self reductions
Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction

- reduce problem to a **smaller** instance of **itself**
- self-reduction
Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction

- Problem instance of size n is reduced to one or more instances of size $n - 1$ or less.
- For termination, problem instances of small size are solved by some other method as base cases
Recursion

- Recursion is a very powerful and fundamental technique
- Basis for several other methods
 - Divide and conquer
 - Dynamic programming
 - Enumeration and branch and bound etc
 - Some classes of greedy algorithms
- Makes proof of correctness easy (via induction)
- Recurrences arise in analysis
Tower of Hanoi

Move stack of \(n \) disks from peg 1 to peg 2, one disk at a time.

Rule: cannot put a larger disk on a smaller disk.

Question: what is a strategy and how many moves does it take?
The Tower of Hanoi via Recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk
Recursive Algorithm

Hanoi(n, src, dest, tmp):
 if (n > 0) then
 Hanoi(n−1, src, tmp, dest)
 Move disk n from src to dest
 Hanoi(n−1, tmp, dest, src)

T(n): time to move n disks via recursive strategy

T(n) = 2T(n−1) + 1
n > 1 and T(1) = 1
Recursive Algorithm

\begin{figure}[h]
\begin{center}
\begin{algorithmic}
\Function{Hanoi}{n, src, dest, tmp}:
\If{$n > 0$}
\State \textbf{Hanoi}$(n-1, \text{src}, \text{tmp}, \text{dest})$
\State Move disk n from src to dest
\State \textbf{Hanoi}$(n-1, \text{tmp}, \text{dest}, \text{src})$
\EndIf
\EndFunction
\end{algorithmic}
\end{center}
\caption{Recursive Algorithm for Hanoi problem}
\end{figure}

$T(n)$: time to move n disks via recursive strategy
Recursive Algorithm

\[
\text{Hanoi}(n, \text{src}, \text{dest}, \text{tmp}):
\]
\[
\text{if } (n > 0) \text{ then}
\]
\[
\text{Hanoi}(n-1, \text{src}, \text{tmp}, \text{dest})
\]
\[
\text{Move disk } n \text{ from src to dest}
\]
\[
\text{Hanoi}(n-1, \text{tmp}, \text{dest}, \text{src})
\]

\[T(n) : \text{time to move } n \text{ disks via recursive strategy} \]

\[T(n) = 2T(n-1) + 1 \quad n > 1 \quad \text{and} \quad T(1) = 1 \]
\[T(n) = 2T(n - 1) + 1 \]
\[= 2^2 T(n - 2) + 2 + 1 \]
\[= \ldots \]
\[= 2^i T(n - i) + 2^{i-1} + 2^{i-2} + \ldots + 1 \]
\[= \ldots \]
\[= 2^{n-1} T(1) + 2^{n-2} + \ldots + 1 \]
\[= 2^{n-1} + 2^{n-2} + \ldots + 1 \]
\[= (2^n - 1) / (2 - 1) = 2^n - 1 \]
Merge Sort
Input Given an array of n elements
Goal Rearrange them in ascending order
1. **Input:** Array \(A[1 \ldots n] \)
1. **Input:** Array $A[1 \ldots n]$

2. Divide into subarrays $A[1 \ldots m]$ and $A[m + 1 \ldots n]$, where $m = \lfloor n/2 \rfloor$
1. **Input:** Array $A[1 \ldots n]$

 $A L G O R I T H M S$

2. Divide into subarrays $A[1 \ldots m]$ and $A[m+1 \ldots n]$, where $m = \lfloor n/2 \rfloor$

 $A L G O R I T H M S$

3. Recursively **MergeSort** $A[1 \ldots m]$ and $A[m+1 \ldots n]$

 $A G L O R I T H M S$
MergeSort

1. **Input:** Array $A[1 \ldots n]$

2. Divide into subarrays $A[1 \ldots m]$ and $A[m + 1 \ldots n]$, where $m = \lfloor n/2 \rfloor$

3. Recursively **MergeSort** $A[1 \ldots m]$ and $A[m + 1 \ldots n]$

4. Merge the sorted arrays
MergeSort

1. **Input:** Array $A[1 \ldots n]$

 \[\quad \text{ALGORITHM} \]

2. Divide into subarrays $A[1 \ldots m]$ and $A[m + 1 \ldots n]$, where $m = \lfloor n/2 \rfloor$

 \[\quad \text{ALGORITHM} \]

3. Recursively **MergeSort** $A[1 \ldots m]$ and $A[m + 1 \ldots n]$

 \[\quad \text{ALGORITHM} \]

4. **Merge** the sorted arrays

 \[\quad \text{ALGORITHM} \]
Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order
Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

\[A \ G \ L \ O \ R \quad H \ I \ M \ S \ T \quad A \ G \]
Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

$A \ G \ L \ O \ R \ \ H \ I \ M \ S \ T$

$A \ G \ H$
Merging Sorted Arrays

• Use a new array C to store the merged array
• Scan A and B from left-to-right, storing elements in C in order

\[
A \ G \ L \ O \ R \quad H \ I \ M \ S \ T
A \ G \ H \ I
\]
Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

$A \ G \ L \ O \ R \ H \ I \ M \ S \ T$

$A \ G \ H \ I \ L \ M \ O \ R \ S \ T$
Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

\[
\begin{align*}
A & \ G \ L \ O \ R \\
H & \ I \ M \ S \ T \\
A & \ G \ H \ I \ L \ M \ O \ R \ S \ T
\end{align*}
\]

- Merge two arrays using only constantly more extra space (in-place merge sort): doable but complicated and typically impractical.
Algorithms Lecture

M(\text{A}[1 \ldots n]):
\begin{align*}
\text{if } n > 1 \\
\quad m \leftarrow \lfloor n/2 \rfloor \\
\quad \text{M(\text{A}[1 \ldots m])} \\
\quad \text{M(\text{A}[m + 1 \ldots n])} \\
\quad \text{M(\text{A}[1 \ldots n], m)}
\end{align*}

Formal Code

\text{Merge(\text{A}[1 \ldots n], m)}:
\begin{align*}
i &\leftarrow 1; \quad j \leftarrow m + 1 \\
\text{for } k \leftarrow 1 \text{ to } n \\
\quad \text{if } j > n \\
\quad \quad B[k] \leftarrow \text{A}[i]; \quad i \leftarrow i + 1 \\
\quad \quad \text{else if } i > m \\
\quad \quad B[k] \leftarrow \text{A}[j]; \quad j \leftarrow j + 1 \\
\quad \quad \text{else if } \text{A}[i] < \text{A}[j] \\
\quad \quad B[k] \leftarrow \text{A}[i]; \quad i \leftarrow i + 1 \\
\quad \quad \text{else} \\
\quad \quad B[k] \leftarrow \text{A}[j]; \quad j \leftarrow j + 1 \\
\text{for } k \leftarrow 1 \text{ to } n \\
\quad \text{A}[k] \leftarrow B[k]
\end{align*}
Running time analysis of merge-sort: Recursion tree method
Recursion tree

MergeSort(A[1..16])
Recursion tree

MergeSort(A[1..16])

MergeSort(A[1..8])
MergeSort(A[9..16])
Recursion tree

MergeSort(A[1..16])

MergeSort(A[1..8])
 - MS(1..4)
 - MS(5..8)

MergeSort(A[9..16])
 - MS(9..12)
 - MS(13..16)
Recursion tree

- **MergeSort(A[1..16])**
 - **MergeSort(A[1..8])**
 - **MS(1..4)**
 - **MS(5..8)**
 - **MS(1..2)**
 - **MS(3..4)**
 - **MS(5..6)**
 - **MS(7..8)**
 - **MergeSort(A[9..16])**
 - **MS(9..12)**
 - **MS(13..16)**
 - **MS(9..10)**
 - **MS(11..12)**
 - **MS(13..14)**
 - **MS(15..16)**
Recursion tree

MergeSort(A[1..16])
MergeSort(A[1..8]) MergeSort(A[9..16])
MS(1..4) MS(5..8) MS(9..12) MS(13..16)
MS(1..2) MS(3..4) MS(5..6) MS(7..8) MS(9..10) MS(11..12) MS(13..14) MS(15..16)
MS(1..1) MS(2..2) MS(3..3) MS(4..4) MS(5..5) MS(6..6) MS(7..7) MS(8..8) MS(9..9) MS(10..10) MS(11..11) MS(12..12) MS(13..13) MS(14..14) MS(15..15) MS(16..16)
Recursion tree: subproblem sizes

MergeSort(A[1..16])

16
Recursion tree: subproblem sizes

```
MergeSort(A[1..16])
  MergeSort(A[1..8])
  MergeSort(A[9..16])
  MS(1..4)
  MS(5..8)
  MS(9..12)
  MS(13..16)
```

16
8
8
4
4
4
4

16
8
8
4
4
4
4
Recursion tree: subproblem sizes
Recursion tree: subproblem sizes
Recursion tree: Total work?
Running Time

$T(n)$: time for merge sort to sort an n element array
Running Time

$T(n)$: time for merge sort to sort an n element array

\[T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn \]
Running Time

$T(n)$: time for merge sort to sort an n element array

\[T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn \]

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want to know $f(n)$ such that $T(n) = \Theta(f(n))$.

- $T(n) = O(f(n))$ - upper bound
- $T(n) = \Omega(f(n))$ - lower bound
Solving Recurrences: Some Techniques

- Know some basic math: geometric series, logarithms, exponentials, elementary calculus
- Expand the recurrence and spot a pattern and use simple math
- **Recursion tree method** — imagine the computation as a tree
- **Guess and verify** — useful for proving upper and lower bounds even if not tight bounds

Albert Einstein:
"Everything should be made as simple as possible, but not simpler."

Know where to be loose in analysis and where to be tight. Comes with practice, practice, practice!
Solving Recurrences: Some Techniques

- Know some basic math: geometric series, logarithms, exponentials, elementary calculus
- Expand the recurrence and spot a pattern and use simple math
- **Recursion tree method** — imagine the computation as a tree
- **Guess and verify** — useful for proving upper and lower bounds even if not tight bounds

Albert Einstein: “Everything should be made as simple as possible, but not simpler.”

Know where to be loose in analysis and where to be tight. Comes with practice, practice, practice!
Recursion Trees: MergeSort: n is a power of 2

- Unroll the recurrence.

$$T(n) = 2T(n/2) + cn$$
Unroll the recurrence.

\[T(n) = 2T(n/2) + cn \]

Identify a pattern.
Recursion Trees: MergeSort: \(n \) is a power of \(2 \)

- Unroll the recurrence.
 \[
 T(n) = 2T(n/2) + cn
 \]

- Identify a pattern. At the \(i \)th level total work is \(cn \).
Recursion Trees: MergeSort: \(n \) is a power of 2

- Unroll the recurrence.
 \[T(n) = 2T(n/2) + cn \]

- Identify a pattern. At the \(i \)th level total work is \(cn \).

- Sum over all levels.
Recursion Trees: MergeSort: \(n \) is a power of 2

- Unroll the recurrence.
 \[T(n) = 2T(n/2) + cn \]

- Identify a pattern. At the \(i \)th level total work is \(cn \).

- Sum over all levels. The number of levels is \(\log n \). So total is \(cn \log n = O(n \log n) \).
Recursion Trees

\[\begin{array}{c}
\frac{n}{2} \\
\frac{n}{4} & \frac{n}{4} & \frac{n}{4} & \frac{n}{4} \\
\end{array} \]
Recursion Trees

Work in each node
Recursion Trees

Work in each node
Recursion Trees

\[
\log n \begin{cases}
\frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} \\
\vdots \\
= cn
\end{cases}
\]

\[
\begin{cases}
\frac{cn}{2} + \frac{cn}{2} \\
= cn
\end{cases}
\]

\[
\begin{cases}
= cn
\end{cases}
\]

\[
= cn
\]
Recursion Trees

\[
\begin{align*}
\log n \left\{ \begin{array}{c}
\frac{cn}{2} + \frac{cn}{2} \\
\frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} \\
\vdots
\end{array} \right. \\
= cn \log n = O(n \log n)
\end{align*}
\]
Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can we do better by splitting into more than 2 arrays? Say k arrays of size n/k each?
Binary Search
Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?

Algorithm

```python
BinarySearch(A[a..b], x):
    if (b - a < 0)
        return NO
    mid = A[⌊(a + b) / 2⌋]
    if (x = mid)
        return YES
    if (x < mid)
        return BinarySearch(A[a..⌊(a + b) / 2⌋] − 1], x)
    else
        return BinarySearch(A[⌊(a + b) / 2⌋ + 1..b], x)
```

Analysis:

$$T(n) = T(⌊n/2⌋) + O(1).$$

$$T(n) = O(\log n).$$

Observation:

After k steps, size of array left is $n / 2^k$.

```
Binary Search in Sorted Arrays

**Input**  Sorted array $A$ of $n$ numbers and number $x$

**Goal**  Is $x$ in $A$?

```plaintext
BinarySearch (A[a..b], x):
 if (b - a < 0) return NO
 mid = A[⌊(a + b)/2⌋]
 if (x = mid) return YES
 if (x < mid)
 return BinarySearch (A[a..⌊(a + b)/2⌋ - 1], x)
 else
 return BinarySearch (A[⌊(a + b)/2⌋ + 1..b], x)
```

Analysis:
$T(n) = T(⌊n/2⌋) + O(1)$.

Observation:
After $k$ steps, size of array left is $n/2^k$. 

38
**Input**  Sorted array $A$ of $n$ numbers and number $x$

**Goal**  Is $x$ in $A$?

```
BinarySearch (A[a..b], x):
 if (b - a < 0) return NO
 mid = A[⌊(a + b)/2⌋]
 if (x = mid) return YES
 if (x < mid)
 return BinarySearch (A[a..⌊(a + b)/2⌋ - 1], x)
 else
 return BinarySearch (A[⌊(a + b)/2⌋ + 1..b], x)
```

**Analysis:** $T(n) = T(\lfloor n/2 \rfloor) + O(1)$. $T(n) = O(\log n)$.

**Observation:** After $k$ steps, size of array left is $n/2^k$