Pre-lecture brain teaser

We talked a lot about languages representing problems. Consider the problem of adding two numbers. What language class does it belong to?

ECE-374-B: Lecture 9 - Recursion, Sorting and Recurrences

Instructor: Abhishek Kumar Umrawal
February 20, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

We talked a lot about languages representing problems. Consider the problem of adding two numbers. What language class does it belong to?

Pre-lecture brain teaser

tick marks

Let's say we are adding two unary numbers.

$$
\begin{equation*}
3+4=7 \rightarrow \underset{ }{\underset{111+1111=1111111}{\longleftrightarrow}} \tag{1}
\end{equation*}
$$

Seems like we can make a PDA that considers

context-free!

Pre-lecture brain teaser

What if we wanted add two binary numbers?

$$
\begin{equation*}
\underline{3}+\underline{4}=\underline{7} \rightarrow 11+100=111 \tag{2}
\end{equation*}
$$

At least context-sensitive b / c we can build a finite Turing machine which takes in the encoding

Pre-lecture brain teaser

What if we wanted add two binary numbers?

$$
\begin{equation*}
3+4=7 \rightarrow 11+100=111 \tag{3}
\end{equation*}
$$

Computes value on left hand side

Pre-lecture brain teaser

What if we wanted add two binary numbers?

$$
\begin{equation*}
3+4=7 \rightarrow 11+100=111 \tag{4}
\end{equation*}
$$

And compares it to the value on the right..

turing machine. io

New Course Section: Introductory algorithms

Learning Objectives

At the end of the lecture, you should be able to understand

- the idea of an algorithm and algorithmic problems,
- how to reduce a problem into another,
- the design and analysis of recursive algorithms, and
- some example recursive algorithms for sorting and searching.

Brief intro to the Random Access Machine (RAM) model

Algorithms and Computing

- Algorithm solves a specific problem.
- Steps/instructions of an algorithm aresimple/primitive and can be executed mechanically.
- Algorithm has a finite description; same description for all instances of the problem
- Algorithm implicitly may have state/memory

A computer is a device that

- implements the primitive instructions
- allows for an automated implementation of the entire algorithm by keeping track of state

Models of Computation vs Computers

\& E.g. Turing Machine

- Model of Computation: an idealized mathematical construct that describes the primitive instructions and other details
- Computer: an actual physical device that implements a very specific model of computation

In this course: design algorithms in a high-level model of computation.

Question: What model of computation will we use to design algorithms?

Models of Computation vs Computers

- Model of Computation: an idealized mathematical construct that describes the primitive instructions and other details
- Computer: an actual physical device that implements a very specific model of computation

In this course: design algorithms in a high-level model of computation.

Question: What model of computation will we use to design algorithms?

The standard programming model that you are used to in programming languages such as Java/ $\underline{C++}$. We have already seen the Turing Machine model.

Unit-Cost RAM Model

Informal description:
$51 \rightarrow$ binay string.

- Basic data type is an integer number
- Numbers in input fit in a word
- Arithmetic/comparison operations on words take constant time
- Arrays allow random access (constant time to access $A[i]$)
- Pointer based data structures via storing addresses in a word

Example

Sorting: input is an array of n numbers

- input size is n (ignore the bits in each number),
- comparing two numbers takes $O(1)$ time,
- random access to array elements,
- addition of indices takes constant time,
- basic arithmetic operations take constant time,
- reading/writing one word from/to memory takes constant time.

We will usually do not allow (or be careful about allowing):

- bitwise operations (and, or, xor, shift, etc).
- floor function.
- limit word size (usually assume unbounded word size).

What is an algorithmic problem?

What is an algorithmic problem?

An algorithmic problem is simply to compute a function
(f): $\sum^{*} \rightarrow \sum_{\Lambda}^{*}$ over strings of a finite alphabet.

Algorithm \mathcal{A} solves f if for all input strings w, \mathcal{A} outputs $f(w)$.
E.g. Adding two numbers.

$$
\begin{aligned}
& \text { mum } 1+\text { nun } 2=\text { sum } 3 . \\
& f(\text { mum } 1, \text { sum } 2)=\text { sum } 3
\end{aligned}
$$

Types of Problems

We will broadly see three types of problems.

- Decision Problem: Is the input a YES or NO input?

Example: Given graph G, nodes s, t, is there a path from s to t in G ?
Example: Given a CFG grammar G and string w, is $w \in L(G)$?

- Search Problem: Find a solution if input is a YES input. Example: Given graph G, nodes s, t, find an s - t path.
- Optimization Problem: Find a best solution among all solutions for the input.
Example: Given graph G, nodes s, t, find a shortest s - t path.

Analysis of Algorithms

Given a problem P and an algorithm \mathcal{A} for P we want to know:

- Does \mathcal{A} correctly solve problem P ?
- What is the asymptotic worst-case running time of \mathcal{A} ?
- What is the asymptotic worst-case space used by \mathcal{A}.

Asymptotic running-time analysis: \mathcal{A} runs in $O(f(n))$ time if:
"for all (n) and forallinputs 1 of size n, $\underline{\mathcal{A}}$ on input \perp terminates after $O(f(n))$ primitive steps."
$O(f(n) \quad T(n)$ is said to he $O(f(n)$ if $T(n) \leq c f(x)$ for some $c>0$ "constant"

Eng. $T(n)=n^{2}$
Check if $T(n)=O\left(n^{2}\right)$!

$$
T(n) \leq c \cdot n^{2}
$$

Take $c=1 \Rightarrow T(n) \leq n^{2} ; T(n)=n^{2}$ (Given)
Check if $T(n)=O\left(n^{5}\right)$!

$$
\begin{aligned}
T(n) & \leq c n^{5} \\
n^{2} & \leq c n^{5} \quad(?) \quad c=1 \\
\Rightarrow \quad & T(n)=O\left(n^{5}\right)
\end{aligned}
$$

Algorithmic Techniques

- Reduction to known problem/algorithm
- Recursion, divide-and-conquer, dynamic programming
- Graph algorithms to use as basic reductions
- Greedy

Some advanced techniques not covered in this class:

- Combinatorial optimization
- Linear and Convex Programming, more generally continuous optimization method
- Advanced data structure
- Randomization
- Many specialized areas

Reductions

Reduction

Reducing problem (A) to problem (B)

- Algorithm for A uses algorithm for B as a black box.

Reduction

Reducing problem A to problem B :

- Algorithm for A uses algorithm for B as a black box.

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Reduction

Reducing problem A to problem B :

- Algorithm for A uses algorithm for B as a black box.

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.
Q: How do you hunt a red elephant?
A: Hold its trunk shut until it turns blue, and then shoot it with the blue elephant gun.

Reduction

Reducing problem A to problem B :

- Algorithm for A uses algorithm for B as a black box.

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.- $\$ 100$)
Q: How do you hunt a red elephant?
A: Hold its trunk shut until it turns blue, and then shoot it with the blue elephant gun. $\frac{C(\$ 100)}{C(\$ 200)}$
Q: How do you shoot a white elephant?
A: Embarrass it till it becomes red. Now use your algorithm for hunting red elephants.

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A ?

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A ?

Naive algorithm:

$$
\begin{aligned}
& \text { DistinctElements }(\mathrm{A}[1 \ldots \mathrm{n}]) \\
& \text { for } i=1 \text { to } n-1 \text { do } \\
& \text { for } j=i+1 \text { to } n \text { do } \\
& \text { if }(A[i]=A[j]) \\
& \text { return YES } \\
& \text { return NO }
\end{aligned}
$$

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A ?

Naive algorithm:
DistinctElements(A[1. .n])
for $i=1$ to $n-1$ do for $j=i+1$ to n do if $(A[i]=A[j])$ return YES
return NO

Running time: $O\left(n^{2}\right)$

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A ?

Naive algorithm:

$$
\begin{aligned}
& \text { DistinctElements }(A[1 \ldots \mathrm{n}]) \\
& \text { for } i=1 \text { to } n-1 \text { do } \\
& \text { for } j=i+1 \text { to } n \text { do } \\
& \text { if }(A[i]=A[j]) \\
& \text { return YES } \\
& \text { return NO }
\end{aligned}
$$

Running time: $O\left(n^{2}\right)$

Reduction to Sorting

$$
\begin{aligned}
& \begin{array}{c}
\text { DistinctElements }(A[1 \ldots n]) \\
\text { Sort } A \\
\text { for } i=1 \text { to } n-1 \text { do } \\
\text { if }(A[i]=A[i+1]) \text { then } \\
\text { return YES } \\
\text { return NO }
\end{array} \\
&=O(n)+\quad \text { Time taken in sorting } \\
&=O(n \log n) \\
&=O(n)+O(n \log n)
\end{aligned}
$$

Reduction to Sorting

```
DistinctElements(A[1..n])
    Sort A
    for i=1 to n-1 do
        if (A[i]=A[i+1]) then
        return YES
    return NO
```

Running time: $O(n)$ plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Reduction to Sorting

```
DistinctElements(A[1..n])
    Sort A
    for i=1 to n-1 do
        if (A[i]=A[i+1]) then
        return YES
    return NO
```

Running time: $O(n)$ plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be "sorted". Can also consider hashing but outside scope of current course.

Two sides of Reductions

Suppose problem A reduces to problem B

- Positive direction: Algorithm for B implies an algorithm for A
- Negative direction: Suppose there is no "efficient" algorithm for A then it implies no efficient algorithm for B (technical condition for reduction time necessary for this)

Two sides of Reductions

Suppose problem A reduces to problem B

- Positive direction: Algorithm for B implies an algorithm for A
- Negative direction: Suppose there is no "efficient" algorithm for A then it implies no efficient algorithm for B (technical condition for reduction time necessary for this)

$$
O\left(n^{2}\right) \quad O(n \log n)
$$

Example: Distinct Elements reduces to Sorting in $O(n)$ time

- An $O(n \log n)$ time algorithm for Sorting implies an $O(n \log n)$ time algorithm for Distinct Elements problem.
- If there is no o $o(n \log n)$ time algorithm for Distinct Elements problem then there is no $o(n \log n)$ time algorithm for Sorting.

Recursion as self reductions

Reduction: reduce one problem to another
Recursion: a special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction

Recursion

Reduction: reduce one problem to another
Recursion: a special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction
- Problem instance of size n is reduced to one or more instances of size $n-1$ or less.
- For termination, problem instances of small size are solved by some other method as base cases
- Recursion is a very powerful and fundamental technique
- Basis for several other methods
- Divide and conquer
- Dynamic programming
- Enumeration and branch and bound etc
- Some classes of greedy algorithms
- Makes proof of correctness easy (via induction)
- Recurrences arise in analysis

Tower of Hanoi

The Tower of Hanoi puzzle

Move stack of n disks from peg 1 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?

Tower of Hanoi via Recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Recursive Algorithm

```
Hanoi(n, src, dest, tmp):
    if ( }n>0)\mathrm{ then
Hanoi( \(n-1\), src, tmp, dest)
Move disk \(n\) from src to dest
Hanoi ( \(n-1\), tmp, dest, src)
```

$$
T(n)=T(n-1)+\text { Move disk }+T(n-1)
$$

Recursive Algorithm

Hanoi (n, src, dest, tmp):
if $(n>0)$ then
Hanoi ($n-1$, src, tmp, dest)
Move disk n from src to dest
Hanoi($n-1$, tmp, dest, src)
$T(n)$: time to move n disks via recursive strategy

Recursive Algorithm

"Recursive \quad Ago " \rightarrow| Hanoi $(n$, sro, dist, tmp $):$ |
| ---: |
| if $(n>0)$ then |
| |
| |
| Hanoi $(n-1$, sra, top, dost) |
| Move disk n from src to dost |
| |
| Hanoi $(n-1$, tmp, dest, sra $)$ |

$T(n)$: time to move n disks via recursive strategy

$$
T(n)=2 T(n-1)+1 \quad n>1 \quad \text { and } T(1)=1
$$

Recurrence relation

$$
\underbrace{T(n)=2 T(n-1)+1} \begin{aligned}
& n>1 \\
& T(1)=1
\end{aligned}
$$

$$
\begin{aligned}
T(n) & =2[2 T(n-2)+1]+1 \\
T(n) & =2^{2} T(n-2)+2+1 \\
& =2^{2}[2 T(n-3)+1]+2+1=2^{3} T\binom{n-3}{\vdots}+2^{2}+2^{1}+1^{0} 24
\end{aligned}
$$

Analysis

$$
\begin{aligned}
T(n) & =2 T(n-1)+1 \\
& =2^{2} T(n-2)+2+1 \\
& =\ldots \\
& =2^{i} T(n-i)+2^{i-1}+2^{i-2}+\ldots+1 \\
& =\ldots \\
& =2^{n-1} T(1)+2^{n-2}+\ldots+1 \\
& =2^{n-1}+2^{n-2}+\ldots+1 \quad \text { Geom } \\
& =\left(2^{n}-1\right) /(2-1)=2^{n}-1 \\
T(n) & =O\left(2^{n}\right)
\end{aligned}
$$

Merge Sort

Sorting

Input Given an array of n elements
Goal Rearrange them in ascending order

MergeSort

1. Input: Array $A[1 \ldots n]$
ALGORITHMS

MergeSort

1. Input: Array $A[1 \ldots n]$
ALGORITHMS
2. Divide into subarrays $A[1 \ldots m]$ and $A[m+1 \ldots n]$, where $m=\lfloor n / 2\rfloor$
ALGOR ITHMS

MergeSort

1. Input: Array $A[1 \ldots n]$
ALGORITHMS
2. Divide into subarrays $A[1 \ldots m]$ and $A[m+1 \ldots n]$, where $m=\lfloor n / 2\rfloor$

$$
A L G O R \text { ITHMS }
$$

3. Recursively MergeSort $A[1 \ldots m]$ and $A[m+1 \ldots n]$

$$
A G L O R \quad H I M S T
$$

MergeSort

1. Input: Array $A[1 \ldots n]$
ALGORITHMS
2. Divide into subarrays $A[1 \ldots m]$ and $A[m+1 \ldots n]$, where $m=\lfloor n / 2\rfloor$

$$
A L G O R \quad I T H M S
$$

3. Recursively MergeSort $A[1 \ldots m]$ and $A[m+1 \ldots n]$

$$
A G L O R \quad H I M S T
$$

4. Merge the sorted arrays
AGHILMORST

MergeSort

1. Input: Array $A[1 \ldots n]$
ALGORITHMS
2. Divide into subarrays $A[1 \ldots m]$ and $A[m+1 \ldots n]$, where $m=\lfloor n / 2\rfloor$

$$
A L G O R \quad I T H M S
$$

3. Recursively MergeSort $A[1 \ldots m]$ and $A[m+1 \ldots n]$ "Recursion"
$\underset{\sim}{\longrightarrow} A G L O R \quad H I M S T$
4. Merge the sorted arrays
"Recursively"
AGHILMORST

Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

$$
\underset{A}{\text { (A) GLOP }} \text { (H) INST }
$$

Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

$$
\begin{aligned}
& A G L O R \quad H I M S T \\
& A G
\end{aligned}
$$

Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

$$
\begin{aligned}
& \text { AGLOR HIMST} \\
& A G H
\end{aligned}
$$

Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

$$
\xrightarrow[A G H \mid]{A G L O R} \xrightarrow{H \mid M S T}
$$

(n) $O(n)$

Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

$$
\begin{gathered}
\text { AGLOR HIMST} \\
A G H I L M O R S T
\end{gathered}
$$

Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

$$
\begin{gathered}
\text { AGLOR HIMST} \\
\text { AGHILMORST }
\end{gathered}
$$

- Merge two arrays using only constantly more extra space (in-place merge sort): doable but complicated and typically impractical.

Formal Code

```
MergeSort(A[1..n]):
    if \(n>1\)
        \(m \leftarrow\lfloor n / 2\rfloor\)
        MergeSort(A[1..m])
        MergeSort (A[m+1..n])
        Merge(A[1..n],m)
```

```
Merge \((A[1 . . n], m)\) :
    \(i \leftarrow 1 ; j \leftarrow m+1\)
    for \(k \leftarrow 1\) to \(n\)
        if \(j>n\)
                \(B[k] \leftarrow A[i] ; i \leftarrow i+1\)
            else if \(i>m\)
                \(B[k] \leftarrow A[j] ; j \leftarrow j+1\)
            else if \(A[i]<A[j]\)
            \(B[k] \leftarrow A[i] ; i \leftarrow i+1\)
            else
                \(B[k] \leftarrow A[j] ; j \leftarrow j+1\)
    for \(k \leftarrow 1\) to \(n\)
    \(A[k] \leftarrow B[k]\)
```

Running time analysis of merge-sort: Recursion tree method

Recursion tree

MergeSort(A[1..16])

Recursion tree

MergeSort(A[1..16])

MergeSort(A[1..8])

MergeSort(A[9..16])

Recursion tree

Recursion tree

Recursion tree

Recursion tree: subproblem sizes

MergeSort(A[1..16])

Recursion tree: subproblem sizes

Recursion tree: subproblem sizes

Recursion tree: subproblem sizes

Recursion tree: subproblem sizes

Reculsision tree: Total work?

Running Time

$T(n)$: time for merge sort to sort an n element array

Running Time
$T(n)$: time for merge sort to sort an n element array

Running Time

$T(n)$: time for merge sort to sort an n element array

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n
$$

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want to know $f(n)$ such that $T(n)=\Theta(f(n))$.

- $T(n)=O(f(n))$ - upper bound
- $T(n)=\Omega(f(n))$ - lower bound

Solving Recurrences: Some Techniques

- Know some basic math: geometric series, logarithms, exponentials, elementary calculus
- Expand the recurrence and spot a pattern and use simple math
- Recursion tree method - imagine the computation as a tree
- Guess and verify - useful for proving upper and lower bounds even if not tight bounds

Solving Recurrences: Some Techniques

- Know some basic math: geometric series, logarithms, exponentials, elementary calculus
- Expand the recurrence and spot a pattern and use simple math
- Recursion tree method - imagine the computation as a tree
- Guess and verify - useful for proving upper and lower bounds even if not tight bounds

Albert Einstein: "Everything should be made as simple as possible, but not simpler."

Know where to be loose in analysis and where to be tight. Comes with practice, practice, practice!

Recursion Trees : MergeSort: n is a power of 2

- Unroll the recurrence.

$$
T(n)=2 T(n / 2)+c n
$$

Recursion Trees : MergeSort: \mathbf{n} is a power of 2

- Unroll the recurrence.

$$
T(n)=2 T(n / 2)+c n
$$

- Identify a pattern.

Recursion Trees : MergeSort: n is a power of 2

- Unroll the recurrence.
$T(n)=2 T(n / 2)+c n$
- Identify a pattern. At the i th level total work is cn.

Recursion Trees : MergeSort: n is a power of 2

- Unroll the recurrence.
$T(n)=2 T(n / 2)+c n$
- Identify a pattern. At the i th level total work is cn .
- Sum over all levels.

Recursion Trees : MergeSort: n is a power of 2

- Unroll the recurrence.

$$
T(n)=2 T(n / 2)+c n
$$

- Identify a pattern. At the ith level total work is cn.
- Sum over all levels. The number of levels is $\log n$. So total is $c n \log n=O(n \log n)$.

Recursion Trees

Recursion Trees

Recursion Trees

Recursion Trees

Recursion Trees

Recursion Tree:

$$
\begin{aligned}
& =c n \log n=O\left(n \log _{2} n\right) \\
& T(n)=O(n \log n)! \\
& T(n)=2 T\left(\frac{n}{2}\right)+c n
\end{aligned}
$$

Merge Sort Variant

Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can we do better by splitting into more than 2 arrays? Say k arrays of size n / k each?

Binary Search

$$
(R \mid Y)
$$

Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x Goal Is \otimes in A ?

n
\downarrow
$\frac{n}{2}$
d
$\frac{n}{4}$

1

Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x Goal Is x in A ?

```
BinarySearch ( \(A[a . . b], x)\) :
        if \((b-a<0)\) return NO
        mid \(=A[\lfloor(a+b) / 2\rfloor]\)
        if ( \(x=\) mid) return YES
        if \((x<m i d)\)
        return BinarySearch \((A[a . .\lfloor(a+b) / 2\rfloor-1], x)\)
        else
        return BinarySearch \((A[\lfloor(a+b) / 2\rfloor+1 . . b], x)\)
```


Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal Is x in A ?

```
BinarySearch ( \(A[a . . b], x)\) :
        if \((b-a<0)\) return NO
        mid \(=A[\lfloor(a+b) / 2\rfloor]\)
        if ( \(x=\) mid) return YES
        if ( \(x<\) mid)
        return BinarySearch \((A[a . .\lfloor(a+b) / 2\rfloor-1], x)\)
        else
        return BinarySearch \((A[\lfloor(a+b) / 2\rfloor+1 . . b], x)\)
```

 Analysis: \(T(n)=T(\lfloor n / 2\rfloor)+O(1) \cdot T(n)=O(\log n)\).
 Observation: After k steps, size of array left is $n / 2^{k}$

