


Pre-lecture brain teaser

We talked a lot about languages representing problems. Consider
the problem of adding two numbers. What language class does it

belong to?



Mobile User


ECE-374-B: Lecture 9 - Recursion, Sorting
and Recurrences

Instructor: Abhishek Kumar Umrawal
February 20, 2024

University of lllinois at Urbana-Champaign



Pre-lecture brain teaser

We talked a lot about languages representing problems. Consider
the problem of adding two numbers. What language class does it
belong to?



Pre-lecture brain teaser

Hcke warks
Let's say we are adding two unary numbers.

3+4:7—>1111+1111: 1111111l (1)
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Seems like we can make a PDA that considers
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Pre-lecture brain teaser

What if we wanted add two binary numbers?

3+4=7—11+100 =111 (2)

At least context-sensitive b/c we can build a finite Turing machine
e —————
ich takes in the encoding

>l111+]11010}=1111}1]



Mobile User


Pre-lecture brain teaser

What if we wanted add two binary numbers?

34+4=7—11+100=111 (3)

Computes value on left hand side

>l111+j1j111|=1111}11]<




Pre-lecture brain teaser

What if we wanted add two binary numbers?

344=7—11+100 =111 (4)

And compares it to the value on the right..

>l111+j1j111|=1111}11]<
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New Course Section: Introductory
algorithms
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Learning Objectives

At the end of the lecture, you should be able to understand

e the idea of an algorithm and algorithmic problems,
e how to reduce a problem into another,
e the design and analysis of recursive algorithms, and

e some example recursive algorithms for sorting and searching.
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Brief intro to the Random Access
Machine (RAM) model
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Algorithms and Computing

e Algorithm solves a specific problem.

e Steps/instructions of an algorithm are[simp?e/primitwe\and

can be executed mechanically.

e Algorithm has a finite description; same description for all

instances of the problem

e Algorithm implicitly may have state/memory
A computer is a device that

e implements the primitive instructions

e allows for an automated implementation of the entire
algorithm by keeping track of state
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Models of Computation vs Computers

< B% 'Tiui.«a’ Macluing

e Model of Computation: an idealized mathematical construct
that describes the primitive instructions and other details

e Computer: an actual physical device that implements a very

specific model of computation

In this course: design algorithms in a high-level model of

computation.

Question: What model of computation will we use to design

algorithms?
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Models of Computation vs Computers

e Model of Computation: an idealized mathematical construct
that describes the primitive instructions and other details
e Computer: an actual physical device that implements a very

specific model of computation

In this course: design algorithms in a high-level model of

computation.

Question: What model of computation will we use to design

algorithms?

The standard programming model that you are used to in
programming languages such as Java/C++. We have already seen

the Turing Machine model.
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Unit-Cost RAM Model

51— bivan shrg-
ITT 1T 1 TN

Informal description:

e Basic data type is an integer number

e Numbers in input fit in a(word>

e Arithmetic/comparison operations on words take constant
time

e Arrays allow random access (constant time to access A[i])

e Pointer based data structures via storing addresses in a word

EET 1 o] AK?;W
I
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Sorting: input is an array of n numbers

e input size is n (ignore the bits in each number),
e comparing two numbers takes O(1) time,

e random access to array elements,

e addition of indices takes constant time,

e basic arithmetic operations take constant time,

reading/writing one word from/to memory takes constant

time.

We will usually do not allow (or be careful about allowing):

e bitwise operations (and, or, xor, shift, etc).
e floor function.
e limit word size (usually assume unbounded word size).

11
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What is an algorithmic problem?
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What is an algorithmic problem?

An algorithmic problem is simply to compute a function
@: > * — ¥ * over strings of a finite alphabet.

———

Algorithm A solves f*if for all input strings w, A outputs f(w).
we ™
B9 Adding fwo niubers.
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Types of Problems

We will broadly see three types of problems.

e Decision Problem: Is the input a YES or NO input?
Example: Given graph G, nodes s, t, is there a path from s to
tin G?
Example: Given a CFG grammar G and string w, is
w e L(G)?

e Search Problem: Find a solution if input is a YES input.

Example: Given graph G, nodes s, t, find an s-t path.

e Optimization Problem: Find a best solution among all

solutions for the input.
Example: Given graph G, nodes s, t, find a shortest s-t path.

13
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Analysis of Algorithms

r'tvxbuﬁ
Given a problem P and an algorithm A for_P we want to know:

e Does A correctly solve problem P?

e What is the asymptotic worst-case running time of A?

e What is the asymptotic worst-case space used by A.

Asymptotic running-time analysis: A runs in O(f(n)) time if:

“for all@and foinputs@of size n, A on input_[ terminates
after O(f(n)) primitive steps.”

gy TE s s o e DS 3k

T) £ cfo) for some cro
* Lombrand,

14
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By T = @

(e af TO) = O () !
T) 2 7™

Tae c=1 > TO) £ > T= m* (Gien)

e np TEN)= O(P°) !
7(4\) < cn?

oL oem® (1) c=l

5> x= 0(°)
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Algorithmic Techniques

Reduction to known problem /algorithm

Recursion, divide-and-conquer, dynamic programming

Graph algorithms to use as basic reductions

Greedy

Some advanced techniques not covered in this class:

Combinatorial optimization

Linear and Convex Programming, more generally continuous
optimization method

Advanced data structure

Randomization

e Many specialized areas

ii5)
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Reductions
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Reducing problem @to problem@

e Algorithm for A uses algorithm for B as a black box.

16
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Reducing problem A to problem B:
e Algorithm for A uses algorithm for B as a black box.

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

16
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Reducing problem A to problem B:
e Algorithm for A uses algorithm for B as a black box.

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?

A: Hold its trunk shut until it turns blue, and then shoot it with
the blue elephant gun.

16
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Reducing problem A to problem B:
e Algorithm for A uses algorithm for B as a black box.

Q: How do you hunt a blue elephant?
A: With a blue elephant gun./"é"‘”")

Q: How do you hunt a red elephant?

A: Hold its trunk shut until it turns blue, and then shoot it with

the blue elephant gun. Q—@?—OQ
- (4100)
Q: How do you shoot a white elephant?

A: Embarrass it till it becomes red. Now use your algorithm for
hunting red elephants. '\@5”’)

16
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UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any
duplicates in A?

17
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UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any
duplicates in A?

Naive algorithm:

DistinctElements(A[1. .n])
for i=1 to n—1 do
for j=i+1 to n do
if (Alil=AlD
return YES

return NO

17
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UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any
duplicates in A?

Naive algorithm:

DistinctElements(A[1. .n])
for i=1 to n—1 do
for j=i+1 to n do
if (Alill=A[JD
return YES
return NO

Running time: O (1)

17
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UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any
duplicates in A?

Naive algorithm:

DistinctElements(A[1. .n])
for i=1 to n—1 do
for j=i+1 to n do
if (Alill=A[JD
return YES
return NO

Running time: O(n?)

17



Reduction to Sorting

DistinctElements(A[1. .n])
Sort A
for i=1 to n—1 do
if (A[li] = A[i +1]) then
return YES
return NO

= O@) + Time Akon \n soiloy

S O(rn),oa—w) !
= 0D +  D(mlogw) Ly
How{

= O('hboa.\)

OL®) Z 0 MNgh) by log 1 EV;_J
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Reduction to Sorting

DistinctElements(A[1. .n])
Sort A
for i=1 to n—1 do
if (A[i]=A[i+1]) then
return YES
return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

18


Mobile User


Reduction to Sorting

DistinctElements(A[1. .n])
Sort A
for i=1 to n—1 do
if (A[i]=A[i+1]) then
return YES
return NO

Running time: O(n) plus time to sort an array of n numbers
Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be
“sorted”. Can also consider hashing but outside scope of current

course.

18
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Two sides of Reductions

Suppose problem A reduces to problem B

_e Positive direction: Algorithm for B implies an algorithm for ‘A

e Negative direction: Suppose there is no “efficient” algorithm

for A then. it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

19
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Two sides of Reductions

Suppose problem A reduces to problem B

e Positive direction: Algorithm for B implies an algorithm for A

e Negative direction: Suppose there is no “efficient” algorithm
for A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

o) O Logn)

Example: Distinct Elements reduces to Sorting in O(n) time

e An O(nlog n) time algorithm for Sorting implies an O(nlog n)
time algorithm for Distinct Elements problem.

o If there is no o(nlog n) time algorithm for Distinct Elements

problem then there is no o(nlog n) time algorithm for Sorting.

19
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Recursion as self reductions
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Recursion

Reduction: reduce one problem to another
Recursion: a special case of reduction

e reduce problem to a smaller instance of itself

e self-reduction

20


Mobile User


Recursion

Reduction: reduce one problem to another
sz)
Recursion: a special case of reduction

e reduce problem to a smaller instance of itself

e self-reduction

e Problem instance of size n is reduced to one or more instances
of size n — 1 or less.

e For termination, problem instances of small size are solved by
some other method as base cases

20
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Recursion

e Recursion is a very powerful and fundamental technique
e Basis for several other methods

e Divide and conquer

e Dynamic programming

e Enumeration and branch and bound etc
e Some classes of greedy algorithms

e Makes proof of correctness easy (via induction)

e Recurrences arise in analysis
DS

21
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dniuE

¥ o

The Tower of Hanoi puzzle

Move stack of n disks from peg 1 to peg 2, one disk at a time.

cannot put a larger disk on a smaller disk.
what is a strategy and how many moves does it take?

22
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Tower of Hanoi via Recursion

= w—p |
=

The Tower of Hanoi algorithm; ignore everything but the bottom disk

rX
>
rFX

23
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Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n>0) then
Hanoi(n — 1, src, tmp, dest)

Move disk L‘I_from src to dest
Hanoi(n — 1, tmp, dest, src)

T) = T("H) 4+ Mow disk + TQn—\)

24
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Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n>0) then
Hanoi(n —1, src, tmp, dest)

Move disk n from src to dest

Hanoi(n — 1, tmp, dest, src)

T(n): time to move n disks via recursive strategy

24



Recursive Algorithm

Hanoi(n, src, dest, tmp):
' Recurtive. if (n>0) then

A‘(%D" —

Hanoi(n —1, src, tmp, dest)

Move disk n from src to dest

Hanoi(n — 1, tmp, dest, src)

T(n): time to move n disks via recursive strategy
L ——

T(n)=2T(n=1)+1 n>1 and T(1) =1

Recurvence velndien T) = :LQ@H)! 1 m>l

T)=)
TM) = 7-[11‘('7\—7—) 1] +1

T = 27 T@-2) + 2 4]

v E) 2 1V ©
2 [2T%) | J+24) = afTL'ﬂ__—@—r 2424 2
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T(n) = 2T(n—1)+1
= 22T(n—-2)+2+1

= 2 T(n—i)+27 142724 .. . +1

= 2”*1T(1)+2"*2+...+1

_ 2n—1+2n—2 -
Geowehne Semed
~ & —1)/(2—1)—2"— »,

T = O(")

25
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Merge Sort
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Input Given an array of n elements

Goal Rearrange them in ascending order

26
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1. Input: Array A[l...n]

ALGORITHMS

27
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1. Input: Array A[l...n]
ALGORITHMS
2. Divide into subarrays A[1l...m]| and Alm+ 1...n], where

m=|n/2|
ALGOR I~ T=HM=5

27
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1. Input: Array A[l...n]
ALGORITHMS

2. Divide into subarrays A[l...m] and A[m+1...n], where
m = [n/2]

|[ALGOR] [ITHMS]

3. Recursively MergeSort A[l...m| and Alm+1...n]

[AGLOR| [HIMST]

27
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1. Input: Array A[l...n]
ALGORITHMS

2. Divide into subarrays A[l...m] and Alm+1...n], where

m = [n/2]
ALGOR ITHMS

3. Recursively MergeSort A[l...m| and Aim+1...n]
AGLOR HIMST
4. Merge the sorted arrays

AGHILMORST
27



1. Input: Array A[l...n]

ALGORITHMS

2. Divide into subarrays A[l...m] and Alm+1...n], where

m=[n/2|

ALGOR ITHMS

3. Recursively MergeSort A[l...m| and Aim+1...n]
AGLOR HIMST

4. Merge the sorted arrays

" E‘ o
___,,_.—’ﬂ"'w‘"’” AGHILMORST
27
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Merging Sorted Arrays

e Use a new array C to store the merged array

e Scan A and B from left-to-right, storing elements in C in order

@GLOR HIMST
A

28
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Merging Sorted Arrays

e Use a new array C to store the merged array

e Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AG

28
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Merging Sorted Arrays

e Use a new array C to store the merged array

e Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGH
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Merging Sorted Arrays

e Use a new array C to store the merged array

e Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGHI

® ()
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Merging Sorted Arrays

e Use a new array C to store the merged array

e Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGHILMORST

28



Merging Sorted Arrays

e Use a new array C to store the merged array

e Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGHILMORST

e Merge two arrays using only constantly more extra space
(in-place merge sort): doable but complicated and typically
impractical.

28



Formal Code

MERGESORT(A[1..n]):
ifn>1
m <« |n/2]
MERGESORT(A[1..m])
MERGESORT(A[m + 1..1n])
MERGE(A[1..n],m)

MERGE(A[1..n],m):
ie—1; jeem+1
fork«—1ton
ifj>n
B[kl Ali]; i—i+1
elseifi>m
Blk] < A[jl; j<j+1
else if A[i] < A[j]
Blk]—Ali]; i—i+1
else
Blk] < A[jl; j<j+1

fork«—1ton
A[k] < B[k]

29
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Running time analysis of merge-sort:
Recursion tree method




MergeSort(A[1..16])

30
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Recursion tree

MergeSort(A[1..16])

MergeSort(A[1..8]) MergeSort(A[9..16])

30
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Recursion tree

MergeSort(A[1..16])

MergeSort(A[1..8]) MergeSort(A[9..16])

30
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Recursion tree

30
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Recursion tree

30
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MergeSort(A[1..16])

31



Recursion tree: subproblem sizes

268

MergeSort(A[1..16])
MergeSort(A[9..16])
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Recursion tree: subproblem sizes

w MergeSort(A[9..16])
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Recursion tree: subproblem sizes

31



Recursion tree: subproblem sizes

31



Recursion tree: Total work?

32



T(n): time for merge sort to sort an n element array

33



T(n): time for merge sort to sort an n element array
{

T(n))= T(Ln/2))+T([n/2]) en’
Ew]

[cﬂj@ @Vﬂ«— w A—Cﬂ?/f cn

FO T .
00 O—*

33
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T(n): time for merge sort to sort an n element array

T(n)=T(|n/2])+ T([n/2])+ cn
What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we
want to know f(n) such that T(n) = ©(f(n)).

e T(n) = O(f(n)) - upper bound
e T(n)=Q(f(n)) - lower bound

33



Solving Recurrences: Some Techniques

Know some basic math: geometric series, logarithms,

exponentials, elementary calculus

Expand the recurrence and spot a pattern and use simple math

e Recursion tree method — imagine the computation as a tree

Guess and verify — useful for proving upper and lower bounds

even if not tight bounds

34



Solving Recurrences: Some Techniques

e Know some basic math: geometric series, logarithms,

exponentials, elementary calculus
e Expand the recurrence and spot a pattern and use simple math
e Recursion tree method — imagine the computation as a tree

e Guess and verify — useful for proving upper and lower bounds
even if not tight bounds

Albert Einstein: “Everything should be made as simple as
possible, but not simpler.”

Know where to be loose in analysis and where to be tight. Comes
with practice, practice, practice!

34



Recursion Trees : MergeSort: n is a power of 2

e Unroll the recurrence.
T(n)=2T(n/2)+ cn

85



Recursion Trees : MergeSort: n is a power of 2

e Unroll the recurrence.
T(n)=2T(n/2)+ cn

e |dentify a pattern.
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Recursion Trees : MergeSort: n is a power of 2

e Unroll the recurrence.
T(n)=2T(n/2)+cn

e |dentify a pattern. At the jth level
total work is cn.
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Recursion Trees : MergeSort: n is a power of 2

e Unroll the recurrence.
T(n)=2T(n/2)+cn
e |dentify a pattern. At the jth level

total work is cn.

e Sum over all levels.

85



Recursion Trees : MergeSort: n is a power of 2

e Unroll the recurrence.
T(n)=2T(n/2)+cn

e |dentify a pattern. At the jth level
total work is cn.

e Sum over all levels. The number of
levels is log n. So total is
cnlogn = O(nlogn).

85



Recursion Trees

36



Recursion Trees

Work in each node

36



Recursion Trees

cn cn
@ @
! I\

Work in each node

36



Recursion Trees

cn = Cn

3 5 = Cn

oz Slomp w2
=cn

36



Recursion Trees

Recurzion Tree " _
cn = Cn
cn cn +
5 0 5 =Cn
cn cn CNn cn +
logn Tt Tt U+ T =cen g
=cn

= cnlogn = O(nlogn)

(= O (mogh) !

T)= 11'(’-";) £ ¢
36
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Merge Sort Variant

Question: Merge Sort splits into 2 (roughly) equal sized arrays.
Can we do better by splitting into more than 2 arrays? Say k
arrays of size n/k each?

37



Binary Search

( Av)
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Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal Is)in A?

AEmEEl i
mE=l 3

J

m 7« N
|

M <L .

- -

38
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Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal Is x in A?

BinarySearch (Ala..b], x):
if (b—a<0) return NO
mid = A[|(a+ b)/2]]
if (x = mid) return YES
if (x < mid)
return BinarySearch (A[a..[(a+ b)/2] — 1], x)
else
return BinarySearch (A[|(a+ b)/2] + 1..b],x)

38



Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal Is x in A?

BinarySearch (Ala..b], x):
if (b—a<0) return NO
mid = A[|(a+ b)/2]]
if (x = mid) return YES

if (x < mid)

return BinarySearch (A[a..[(a+ b)/2] — 1], x)
else

return BinarySearch (A[|(a+ b)/2] + 1..b],x)

i
Analysis: T(n) = T(|n/2]) + O(1). T(n) = O(logn).

Observation: After k steps, size of array left is n/2k

38
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